

2KK7006

Features

- VDS = 100 V
- ID (at VGS = 10 V) = 13.5 A
- RDS(ON) (at VGS = 10 V) < 8.3 mΩ
- RDS(ON) (at VGS = 4.5 V) < 10.6 mΩ

■ Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Parameter		Symbol	Rating	Unit	
Drain-Source Voltage		Vds	100	- V	
Gate-Source Voltage		Vgs	±20		
Continuous Drain Current	Ta=25℃	١D	13.5	A	
	Ta =70 ℃		10.5		
Pulsed Drain Current ^C		Ідм	55		
Avalanche Current ^C	las	33			
Avalanche Energy L = 0.1 mH ^C	Eas	54	mJ		
VDS Spike	10µs	VSPIKE	120	V	
Power Dissipation ^B	Ta=25℃	Do	3.1	w	
	Ta=70℃	FD	2.0		
Thermal Resistance, Junction- to-Ambient ^A	$t \le 10s$	Dola	40	°C/W	
Thermal Resistance, Junction- to-Ambient ^{A D}	Steady-State	REJA	75		
Thermal Resistance, Junction- to-Lead	Steady-State	Rejl	24		
Junction Temperature		TJ	150	Ĉ	
Storage Temperature Range		Tstg	-55 to 150		

Notes:

A. The value of R_{0JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. The value in any given application depends on the user's specific board design.

- B. The power dissipation PD is based on TJ(MAX)=150°C, using \leq 10s junction-to-case thermal resistance.
- C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C. Ratings are based on low frequency and duty cycles to keep initial T_J=25°C
- D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to lead $R_{\theta JL}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in² FR-4 board with 2oz Copper, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating.

2KK7006

■ Electrical Characteristics (T_J = 25[°]C unless othewise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Drain-Source Breakdown Voltage	BVDSS	ID = 250 μA, VGS = 0V	100			V	
Zero Gate Voltage Drain Current	IDSS	VDS = 100 V, VGS = 0 V			1		
		V_{DS} = 100 V, V_{GS} = 0 V, T_J = 55 $^{\circ}C$			5	μΑ	
Gate to Source Leakage Current	lgss	VDS = 0 V, VGS = ±20 V			±100	nA	
Gate to Source Threshold Voltage	VGS(th)	VDS = VGS , ID = 250µA	1.3		2.3	V	
		Vgs = 10 V, Id = 13.5 A			8.3		
Static Drain-Source On-Resistance	RDS(ON)	Vgs = 10 V, Id = 13.5 A, Tj = 125 $^\circ \mathrm{C}$			14.8	mΩ	
		Vgs = 4.5 V, ID = 11.5 A			10.6		
Forward Transconductance	gfs	VDS = 5 V, ID = 13.5 A		75		S	
Input Capacitance	Ciss			3130			
Output Capacitance	Coss	Vgs = 0 V, Vds = 50 V, f = 1 MHz		245		pF	
Reverse Transfer Capacitance	Crss			12.5			
Gate Resistance	Rg	VGS = 0 V, VDS = 0 V, f = 1 MHz	0.7	1.4	2.1	Ω	
Total Gate Charge	Qg(10V)			42	60		
Total Gate Charge	Qg(4.5V)	Vgs = 10V, Vds = 50 V,		18.5	28	-0	
Gate Source Charge	Qgs	ID = 13.5 A		7.5		nc	
Gate Drain Charge	Qgd			4.5			
Turn-On DelayTime	td(on)			8			
Turn-On Rise Time	tr	Vgs = 10V, Vds = 50 V,		5		ns	
Turn-Off DelayTime	td(off)	$R_L = 3.7 \Omega$, $R_{GEN} = 3 \Omega$		41			
Turn-Off Fall Time	tf			7			
Body Diode Reverse Recovery Time	trr	15 - 12 = 0.04		28			
Body Diode Reverse Recovery Charge	Qrr	$IF = 13.5 \text{ A}, \text{ di/dt} = 500 \text{ A/} \mu \text{s}$		130		nC	
Maximum Body-Diode Continuous Current	ls				4	А	
Diode Forward Voltage	Vsd	Vgs = 0 V, Is = 1 A		0.7	1	V	

Marking

2

Marking	K7006
Marking	KC****

2KK7006

Typical Electrical and Thermal Characteristics

2KK7006

SMD Type

N-Channel MOSFET

2KK7006

Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms

