
N-Channel MOSFET 2SK3050DFN

■ Features

- V_{DS} = 100 V
- ID (at VGS = 10 V) = 8 A
- RDS(ON) (at VGS = 10 V) < 32 mΩ
- RDS(ON) (at VGS = 4.5 V) < $39 \text{ m}\Omega$

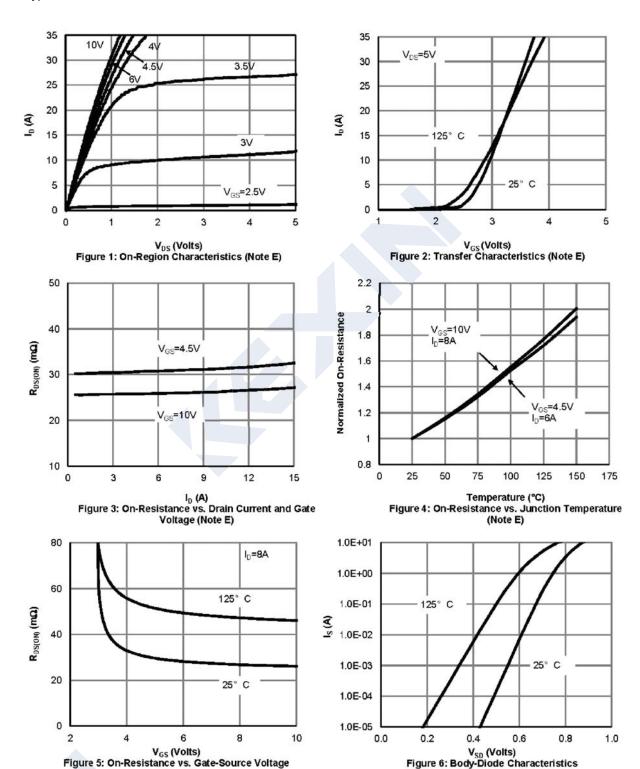
■ Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Parameter		Symbol	Rating	Unit	
Drain-Source Voltage		Vps	100	V	
Gate-Source Voltage	Vgs	±20	V		
Continuous Drain Current	TA=25°C	- ID	8		
	TA=70°C	ID	6	A	
Pulsed Drain Current ^C	IDМ	32			
D Distriction B	TA=25℃	PD	4.1	W	
Power Dissipation ^B	TA=70°C	PD	2.6	T VV	
Thermal Resistance.Junction- to-Ambient A	t ≤ 10s	RthJA	30	°C/W	
Thermal Resistance.Junction- to-Ambient AD	Steady-State	KthJA	55		
Junction Temperature		TJ	150	°C	
Storage Temperature Range		Tstg	-55 to 150		

N-Channel MOSFET 2SK3050DFN

■ Electrical Characteristics (T_J = 25°C unless othewise specified)

Parameter	Symbol	Test Conditions		Тур	Max	Unit
Drain-Source Breakdown Voltage	BVDSS	ID = 250 μA, VGS = 0V	100			V
Zara Cata Valtaga Durin Communi	Inoc	VDS = 100 V, VGS = 0 V			1	
Zero Gate Voltage Drain Current	IDSS	V _D S = 100 V, V _G S = 0 V, T _J = 55 °C			5	μΑ
Gate to Source Leakage Current	IGSS	VDS = 0 V, VGS = ±20 V			±100	nΑ
Gate to Source Threshold Voltage	VGS(th)	V _D S = V _G S , I _D = 250μA	1.4		2.4	V
Static Drain-Source On-Resistance	RDS(On)	Vgs = 10 V, ID = 8 A			32	mΩ
		Vgs = 10 V, ID = 8 A, TJ = 125 ℃			57	
		VGS = 4.5 V, ID = 6 A			39	
Forward Transconductance	gFS	VDS = 5 V, ID = 8 A		25		S
Input Capacitance	Ciss			840		
Output Capacitance	Coss	Vgs = 0 V, Vps = 50 V, f = 1 MHz		64		pF
Reverse Transfer Capacitance	Crss			4		
Gate Resistance	Rg	Vgs = 0 V, Vps = 0 V, f = 1 MHz		1.4		Ω
Total Gate Charge	Qg(10V)	Vgs = 10V, Vps = 50 V, Ip = 8 A Vgs=0V, Vps=50V		12.8	25	nC
Total Gate Charge	Qg(4.5V)			6.1	12	
Gate Source Charge	Qgs			2.1		
Gate Drain Charge	Qgd			1.8		
Output Charge	Qoss			11		
Turn-On DelayTime	td(on)			7		ns
Turn-On Rise Time	tr	VGS = 10V, VDS = 50 V, RL = 5.85Ω ,		8		
Turn-Off DelayTime	td(off)	Rgen = 3 Ω		24		
Turn-Off Fall Time	tf]		3		
Body Diode Reverse Recovery Time	trr	- IF = 8 A, dt/dt = 500 A/μs		20		
Body Diode Reverse Recovery Charge	Qrr			70		nC
Maximum Body-Diode Continuous Current	Is				5	Α
Diode Forward Voltage	VsD	VGS = 0 V, IS = 1 A			1	V


Notes:

- A. The value of Reja is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with Ta=25°C. The value in any given application depends on the user's specific board design.
- B. The power dissipation PD is based on TJ(MAX)=150°C, using ≤10s junction-to-case thermal resistance.
- C. Repetitive rating, pulse width limited by junction temperature T_J(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial T_J=25°C
- D. The Reja is the sum of the thermal impedance from junction to lead Rejl and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in² FR-4 board with 2oz Copper, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating.

N-Channel MOSFET 2SK3050DFN

■ Typical Electrical and Thermal Characteristics

(Note E)

(Note E)

N-Channel MOSFET 2SK3050DFN

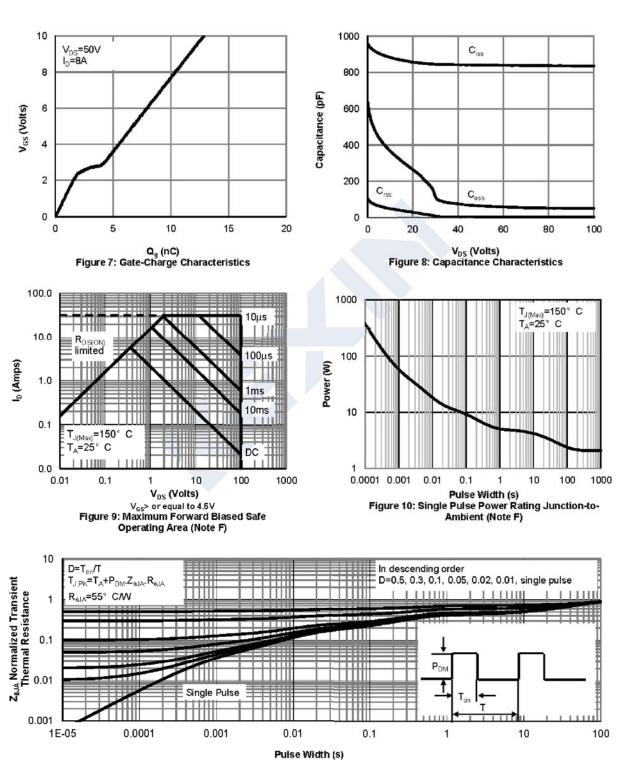


Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

KEXIN

N-Channel MOSFET 2SK3050DFN

Figure A: Gate Charge Test Circuit & Waveforms

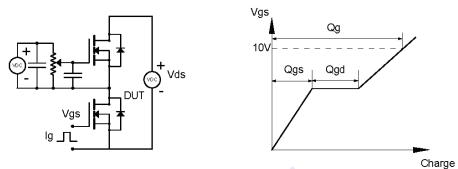


Figure B: Resistive Switching Test Circuit & Waveforms

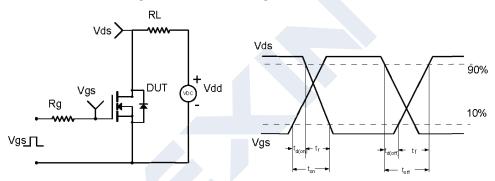
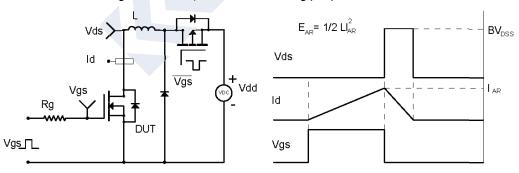
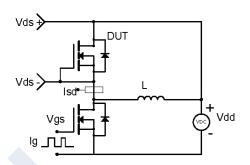
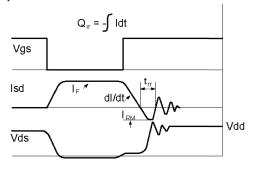
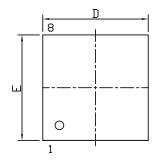
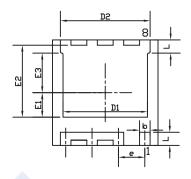


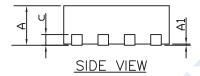
Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

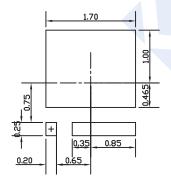





Figure D: Diode Recovery Test Circuit & Waveforms



N-Channel MOSFET 2SK3050DFN


■ DFN2x2C-8L Package Outline Dimensions


TOP VIEW

BOTTOM VIEW

RECOMMENDED LAND PATTERN

UNIT: mm

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.70	0.75	0.80	0.028	0.030	0.032	
A1	0.00	0.02	0.05	0.000	0.001	0.002	
b	0.15	0.20	0. 25	0.006	0.008	0.010	
С		0.20 Ref			0.008 Ref		
D	1. 90	2.00	2.10	0.075	0.079	0.083	
D1	1.50	1.60	1.70	0.059	0.063	0.067	
D2	1.60	1.70	1.80	0.063	0.067	0.071	
Е	1.90	2.00	2. 10	0.075	0.079	0.083	
E1	0.415	0.465	0.515	0.016	0.018	0.020	
E2	1. 265	1.365	1.465	0.050	0.054	0.058	
E3	0.700	0.750	0.800	0.028	0.030	0.032	
e	0.50 BSC			0. 020 BSC			
Ĺ	0. 20	0. 25	0.30	0.008	0.010	0.012	

NOTE

1. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.