SMD Type

Operational Amplifier

KM5532

General Description

The 5532 is a dual high-performance low noise operational amplifier. Compared to most of the standard operational amplifiers, such as the 1458, it shows better noise performance, improved output drive capability and considerably higher small-signal and power bandwidths.

This makes the device especially suitable for application in high-quality and professional audio equipment, instrumentation and control circuits, and telephone channel amplifiers. The op amp is internally compensated for gains equal to one.

PIN CONFIGURATION

Features

- Small-Signal Bandwidth: 10 MHz
- Output Drive Capability: 600Ω, 10 V_{RMS}
- Input Noise Voltage: 5.0 nV/ $\sqrt{\text{Hz}}$ (Typical)
- DC Voltage Gain: 50000
- AC Voltage Gain: 2200 at 10 kHz
- Power Bandwidth: 140 kHz
- Slew Rate: 9.0 V/µs
- Large Supply Voltage Ranget 3.0 to ± 20 V
- Compensated for Unity Gain
- Pb–Free Packages are Available

KM5532

Figure 1. Equivalent Schematic (Each Amplifier)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Supply Voltage	V _S	±22	V	
Input Voltage	V _{IN}	$\pm V_{SUPPLY}$	V	
Differential Input Voltage (Note 1)	V _{DIFF}	± 0.5	V	
Operating Temperature Range	T _{amb}	0 to 70	°C	
Storage Temperature	T _{stg}	–65 to +150	°C	
Junction Temperature	Tj	150	°C	
Maximum Power Dissipation, $T_{amb} = 25^{\circ}C$ (Still-Air)	PD	780	mW	
Thermal Resistance, Junction-to-Ambient	R _{θJA}	182	°C/W	
Lead Soldering Temperature (10 sec max)	T _{sld}	230	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Diodes protect the inputs against overvoltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input

voltage exceeds 0.6 V. Maximum current should be limited to \pm 10 mA.

2

SMD Type

KM5532

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Offset Voltage	V _{OS}	-	-	0.5	4.0	mV
	-	Overtemperature	-	-	5.0	mV
	$\Delta V_{OS} / \Delta T$	-	-	5.0	_	μV/°C
Offset Current	I _{OS}	-	-	10	150	nA
	-	Overtemperature	-	-	200	nA
	$\Delta I_{OS} / \Delta T$	-	-	200	-	pA/°C
Input Current	Ι _Β	-	-	300	800	nA
	-	Overtemperature	-	-	1000	nA
	$\Delta I_{B} / \Delta T$	-	-	5.0	-	nA/°C
Supply Current	I _{CC}	-	-	8.0	16	mA
	-	Overtemperature	-	-	_	
Common-Mode Input Range	V _{CM}	-	±12	±13	-	V
Common-Mode Rejection Ratio	CMRR	-	70	100	-	dB
Power Supply Rejection Ratio	PSRR	-	-	10	100	μV/V
Large-Signal Voltage Gain	A _{VOL}	$R_L \ge 2.0 \text{ k}\Omega; V_O = \pm 10 \text{ V}$	25	100	-	V/mV
		Overtemperature	15	-	-	
		$R_{L} \ge 600 \ \Omega; V_{O} = \pm 10 \ V$	15	50	-	
		Overtemperature	10	-	-	
Output Swing	V _{OUT}	$R_L \ge 600 \Omega$	±12	±13	-	V
		Overtemperature	±10	±12	-	
		$R_{L} \ge 600 \ \Omega; \ V_{S} = \pm 18 \ V$	±15	±16	-	
		Overtemperature	±12	±14	-	
		$R_L \ge 2.0 \ k\Omega$	±13	±13.5	-	
		Overtemperature	±10	±12.5	-	
Input Resistance	R _{IN}	-	30	300	-	kΩ
Output Short Circuit Current	I _{SC}	-	10	38	60	mA

DC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$; $V_{S} = \pm 15$ V, unless otherwise noted.) (Notes 2, 3 and 4)

Diodes protect the inputs against overvoltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds 0.6 V. Maximum current should be limited to ±10 mA.

For operation at elevated temperature, derate packages based on the package thermal resistance.
Output may be shorted to ground at V_S = ±15 V, T_{amb} = 25 °C. Temperature and/or supply voltages must be limited to ensure dissipation rating is not exceeded.

KEXIN

SMD Type

KM5532

AC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$; $V_S = \pm 15$ V, unless otherwise noted.)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Resistance	R _{OUT}	A_V = 30 dB Closed-loop f = 10 kHz, R _L = 600 Ω	-	0.3	-	Ω
Overshoot	-	Voltage-Follower				%
		$V_{IN} = 100 \text{ mV}_{P-P}$	-	10	-	
		$C_L = 100 \text{ pF}; R_L = 600 \Omega$				
Gain	A _V	f = 10 kHz	-	2.2	-	V/mV
Gain Bandwidth Product	GBW	$C_L = 100 \text{ pF}; R_L = 600 \Omega$	-	10	-	MHz
Slew Rate	SR	-	-	9.0	-	V/µs
Power Bandwidth	-	$V_{OUT} = \pm 10 V$	-	140	-	kHz
		V _{OUT} = ±14 V; R _L = 600 Ω	-	100	-	
		$V_{CC} = \pm 18 V$				

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$; $V_{S} = \pm 15$ V, unless otherwise noted.)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Noise Voltage	V _{NOISE}	f _O = 30 Hz		8.0	-	nV/\sqrt{Hz}
		f _O = 1.0 kHz	-	5.0	-	
Input Noise Current	I _{NOISE}	f _O = 30 Hz	-	2.7	-	pA/√Hz
		f _O = 1.0 kHz	-	0.7	-	
Channel Separation	-	f = 1.0 kHz; R_{S} = 5.0 kΩ	-	110	-	dB

Marking 5532

Closed-Loop Frequency Response

Voltage-Follower

Figure 2. Test Circuits

KM5532

■ TYPICAL PERFORMANCE CHARACTERISTICS

Figure 10. Input Noise Voltage Density

KEXIN