Operational Amplifier

KM5532

General Description

The 5532 is a dual high-performance low noise operational amplifier. Compared to most of the standard operational amplifiers, such as the 1458 , it shows better noise performance, improved output drive capability and considerably higher small-signal and power bandwidths.

This makes the device especially suitable for application in high-quality and professional audio equipment, instrumentation and control circuits, and telephone channel amplifiers. The op amp is internally compensated for gains equal to one.

PIN CONFIGURATION

- Features

- Small-Signal Bandwidth: 10 MHz
- Output Drive Capability: $600 \Omega, 10 \mathrm{~V}_{\mathrm{RMS}}$
- Input Noise Voltage: $5.0 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (Typical)
- DC Voltage Gain: 50000
- AC Voltage Gain: 2200 at 10 kHz
- Power Bandwidth: 140 kHz
- Slew Rate: 9.0 V/us
- Large Supply Voltage Rang ± 3.0 to $\pm 20 \mathrm{~V}$
- Compensated for Unity Gain
- Pb-Free Packages are Available

KM5532

Figure 1. Equivalent Schematic (Each Amplifier)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{S}	± 22	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	$\pm \mathrm{V}_{\text {SUPPLY }}$	V
Differential Input Voltage (Note 1)	$\mathrm{V}_{\text {DIFF }}$	± 0.5	V
Operating Temperature Range	Tamb	0 to 70	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Maximum Power Dissipation, $\mathrm{Tamb}=25^{\circ} \mathrm{C}$ (Still-Air)	P_{D}	780	mW
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	182	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Soldering Temperature (10 sec max)	$\mathrm{T}_{\text {sld }}$	230	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Diodes protect the inputs against overvoltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds 0.6 V . Maximum current should be limited to $\pm 10 \mathrm{~mA}$.

KM5532

DC ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.) (Notes 2, 3 and 4)

Characteristic	Symbol	Test Conditions	Min	Typ	Max	Unit
Offset Voltage	$\mathrm{V}_{\text {OS }}$	-	-	0.5	4.0	mV
	-	Overtemperature	-	-	5.0	mV
	$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$	-	-	5.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Current	los	-	-	10	150	nA
	-	Overtemperature	-	-	200	nA
	$\Delta \mathrm{l}_{\mathrm{OS}} / \Delta \mathrm{T}$	-	-	200	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Current	I_{B}	-	-	300	800	nA
	-	Overtemperature	-	-	1000	nA
	$\Delta \mathrm{I}_{\mathrm{B}} / \Delta \mathrm{T}$	-	-	5.0	-	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
Supply Current	I_{CC}	-	-	8.0	16	mA
	-	Overtemperature	-	-	-	
Common-Mode Input Range	V_{CM}	-	± 12	± 13	-	V
Common-Mode Rejection Ratio	CMRR	-	70	100	-	dB
Power Supply Rejection Ratio	PSRR	-	-	10	100	$\mu \mathrm{V} / \mathrm{V}$
Large-Signal Voltage Gain	Avol	$\mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	100	-	V/mV
		Overtemperature	15	-	-	
		$\mathrm{R}_{\mathrm{L}} \geq 600 \Omega ; \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	15	50	-	
		Overtemperature	10	-	-	
Output Swing	V OUT	$R_{L} \geq 600 \Omega$	± 12	± 13	-	V
		Overtemperature	± 10	± 12	-	
		$\mathrm{R}_{\mathrm{L}} \geq 600 \Omega ; \mathrm{V}_{\mathrm{S}}= \pm 18 \mathrm{~V}$	± 15	± 16	-	
		Overtemperature	± 12	± 14	-	
		$\mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega$	± 13	± 13.5	-	
		Overtemperature	± 10	± 12.5	-	
Input Resistance	R_{IN}	-	30	300	-	$\mathrm{k} \Omega$
Output Short Circuit Current	$\mathrm{I}_{\text {SC }}$	-	10	38	60	mA

2. Diodes protect the inputs against overvoltage. Therefore, unless current-limiting resistors are used, large currents will flow if thedifferential input voltage exceeds 0.6 V . Maximum current should be limited to $\pm 10 \mathrm{~mA}$.
3. For operation at elevated temperature, derate packages based on the package thermal resistance
4. Output may be shorted to ground at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$. Temperature and/or supply voltages must be limited to ensure dissipation rating is not exceeded.

KM5532

- AC ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.)

Characteristic	Symbol	Test Conditions	Min	Typ	Max	Unit
Output Resistance	ROUT	$\begin{gathered} \mathrm{A}_{\mathrm{V}}=30 \mathrm{~dB} \text { Closed-loop } \\ \mathrm{f}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega \end{gathered}$	-	0.3	-	Ω
Overshoot	-	Voltage-Follower $\begin{gathered} \mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV} \mathrm{P}_{\mathrm{P}-\mathrm{P}} \\ \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=600 \Omega \end{gathered}$	-	10	-	\%
Gain	A_{V}	$\mathrm{f}=10 \mathrm{kHz}$	-	2.2	-	V / mV
Gain Bandwidth Product	GBW	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=600 \Omega$	-	10	-	MHz
Slew Rate	SR	-	-	9.0	-	V/ $\mu \mathrm{s}$
Power Bandwidth	-	$\begin{gathered} \mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}= \pm 14 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=600 \Omega \\ \mathrm{~V}_{\mathrm{CC}}= \pm 18 \mathrm{~V} \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 140 \\ & 100 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	kHz

ELECTRICAL CHARACTERISTICS $\left(T_{a m b}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right.$, unless otherwise noted.)

Characteristic	Symbol	Test Conditions	Min	Typ	Max	Unit
Input Noise Voltage	$\mathrm{V}_{\text {NOISE }}$	$\mathrm{f}_{\mathrm{O}}=30 \mathrm{~Hz}$	-	8.0	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}_{\mathrm{O}}=1.0 \mathrm{kHz}$	-	5.0	-	
Input Noise Current	$\mathrm{I}_{\text {NOISE }}$	$\mathrm{f}_{\mathrm{O}}=30 \mathrm{~Hz}$	-	2.7	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}_{\mathrm{O}}=1.0 \mathrm{kHz}$	-	0.7	-	
Channel Separation	-	$\mathrm{f}=1.0 \mathrm{kHz} ; \mathrm{R}_{\mathrm{S}}=5.0 \mathrm{k} \Omega$	-	110	-	dB

Marking

Marking	5532

Closed-Loop Frequency Response

Voltage-Follower

Figure 2. Test Circuits

KM5532

■ TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Open-Loop Frequency
Response

Figure 4. Closed-Loop Frequency
Response

Figure 7. Input Bias Current

Figure 5. Large-Signal Frequency Response

Figure 8. Input Common-Mode Voltage Range

Figure 9. Supply Current

Figure 10. Input Noise Voltage Density

